Premium level measuring instruments factory

Top level measuring devices factory: Data Analytics – IIoT devices generate large amounts of data. Radar sensors equipped with IIoT capabilities often include built-in analytics tools that seamlessly integrate with industrial data analytics platforms. This empowers organizations to extract insights from collected data enabling informed decision making. Enhanced Connectivity – To fully participate in the IIoT ecosystem, radar sensors are equipped with versatile connectivity options such as Ethernet, Wi-Fi or cellular networks. These connectivity options ensure integration with existing control and data acquisition (SCADA) systems or cloud based platforms. See even more details on level measuring devices.

Level Measurement Solutions for Deaerators: With proper level control and instrumentation, every part of the steam generation cycle can be managed for optimal efficiency. Deaerator Functions: The deaerator serves as an “open” type heat exchanger with its primary function being the removal of oxygen and other corrosive gases from the boiler feedwater. This is accomplished using steam, which can give up about 970 Btu per pound, to support the deaeration process as well as preheat boiler feedwater.

So what can be done about these difficulties? Under the condition of strong dust, on the one hand, the radar with high transmitting energy can be selected, on the other hand, the measurement software with continuous measurement algorithm of wave-loss waiting can be selected. When the radar encounters strong dust, it will not misjudge the measurement result even if the radar loses wave for a short time. After entering the state of continuous measurement algorithm, if the reflection wave of real material surface can be recognized within the set waiting time, the correct measurement value of material surface can be obtained. In the past, only a few foreign radars have this function. At present, there are also domestic radars with this function, and the practical application effect is very good.

Rod antenna: generally used in strong corrosive environments, with weak anti-interference ability and small range; Flare antenna: stronger anti-interference ability, suitable for more complex environments. The larger the bell mouth, the more concentrated the energy, and the larger the measuring range; Parabolic antenna: the focusing effect is stronger than that of the bell mouth, the anti-interference ability is the strongest, and the range is the largest.

So what are the installation technical requirements for radar water level meters? The installation of the radar water level meter must be vertical to the object to be measured; there should be no obstructions between the measured object and the radar water level meter, otherwise it will affect the reflection of radar waves, that is, affect the measurement accuracy; the center of the radar water level meter is far from the shore of the water body. The distance must be greater than the radius of the transmitting beam, otherwise the measurement accuracy will also be affected; the installation cantilever bracket of the radar water level meter must be firm, and cannot be shaken up and down; in order to protect the radar water level meter, the water level meter can be installed on the cantilever bracket. Iron box, put the radar water level meter probe.

Product features: Large display range, wide range of use, suitable for low temperature, medium temperature, high pressure occasions. It can be matched with remote transmitter output 4-20MADC standard signal to realize remote display of liquid level guage. It can also be matched with liquid level switch to realize liquid level control. Generally speaking, the material level feedback is inaccurate and untimely, which is very prone to explosion events, and there is a greater safety risk. Therefore, the requirements for the radar level meter are very high, but the radar level meter often has abnormal material level jumps or falls, or even crashes, resulting in large errors in material level measurement, which brings trouble to production and sales.

With emphasis placed on customer satisfaction, innovation, product development and overall business transformation, the company continued to innovate and expand with each passing year. KAIDI has successfully achieved global recognition, obtaining the leading position as Asia’s top process automation sensor manufacturer. In the past 5 years, the company has undergone tremendous growth and development – flourishing internationally and providing customers worldwide with the best customized solutions for process automation. Find additional details on https://www.kaidi86.com/. The Magnetic Level Gauge all use vacuum tube technology, with a lifespan of 3-5 years, and protection grade is up to IP68, not easy to fade.

The radar level gauge works by electromagnetic waves. Its working principle is to measure the specific liquid level by transmitting electromagnetic waves to the measured target. After the electromagnetic waves are emitted, they are reflected by the medium. For the radar level gauge, its key function is to ensure that it can transmit magnetrol guided wave radar signals smoothly. In our industrial production site, interference often occurs, so which interference sources will affect the measurement of the radar level gauge? let’s see.

Under many operating conditions, ultrasonic level meter and radar level meter are commonly used. Some users are very entangled in the choice of these two level meter and do not know how to choose. Today, let’s talk about the principles and selection principles of these two types of level meter . Principle and selection principle of ultrasonic level meter. Working principle: The ultrasonic pulse probe emits a beam of ultrasonic pulses to the measured medium, and the sound wave is reflected by the liquid surface. The distance between the liquid levels is measured by measuring the time difference between the emission and reflection of the sound waves. Since the ultrasonic level gauge is not a liquid, it can be used to measure corrosive, non-volatile and non-foaming places.